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1. INTRODUCTION

The Lax equivalence theorem on the convergence of the solution of the
discrete problem to the solution of the given properly posed continuous
initial-value (Cauchy) problem states that stability of the finite difference
scheme is necessary and sufficient for convergence, provided it is consistent.
This theorem, which plays a basic role in the subject, was first established in
an operator-theoretic setting in Banach spaces by Peter Lax (in a seminar
talk at New York University in January 1954; published with Richtmyer1

[17] in 1956; see the presentation in Richtmyer and Morton [21, p. 39-59]).
It has been generalized in various directions in the meantime. For example,
Schultz [23] established an analog for locally convex topological spaces,
Ansorge [lJ, Ansorge and Haas [2], and Ansorge and Geiger [3] obtained
certain nonlinear analogs (the latter paper is in the framework of approxima
tion theory), Wendroff [34] gave a strengthened form with a shorter proof
based upon Fourier transforms and multipliers, Hersh [13J considered an
extension for mixed initial-boundary value problems, and Thompson [32],
and Stetter [26] considered the matter for inhomogeneous problems and
some functional differential equations. Chartres and Stepleman [10] gave an
abstract version with a simple proof, applicable, as they state, to any numeri
cal computation method (they apply it to ordinary differential equations);
Stummel, in a series of papers (see, e.g., [27]) presented a more abstract
version as part of his general theory of discrete convergence of operators.
For results of the Russian school see, for example, Samarskii [22].

The Lax's theorem, just as the Banach-Steinhaus theorem on sequences
of linear operators with which it is connected, is a pure convergence theorem.
During a colloquium lecture held at the Oxford University Computing

1 Chartres and Stepleman [10] state that the Lax theorem, also known as the Lax
Richtmyer'theorem, is attributed to Kantorovitch but do not refer to any literature. They
have however in mind the latter's survey paper [14]. Marinescu in his very recent book
[19] cites Kantorovitch (but not Lax). It is interesting to note that Marinescu treats the
matter in the framework of Stummel's theory,
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Laboratory by one of the authors on May 10, 1973, on an application of
the Banach-Steinhaus theorem equipped with a rate of convergence to
quadrature formulas (see Butzer et al. [9]), B. Noble raised the question
whether similar methods could be used to furnish Lax's theorem with orders.
in the sense that consistency, stability, and convergence would be considered
with orders. Already Peetre and Thomee [20] have shown by methods of
interpolation space theory that for consistency of order ex > 0 stability (of
order zero) implies convergence with order ex in Sobolev spaces; this work
was carried on in many directions by Thomee and his collaborators and
others independently, for example, by Brenner, Kreis, Lofstrom, Wahlbin,
and Widlundin [4-7,15,16,18,28-31,35].

But the original question of Noble whether the Lax theorem in its suffi
cient as well as necessary part formulation in the setting of general Banach
spaces attached to the Cauchy problem, could be generalized to one con
taining orders, seems apparently not to have been considered. Since that
time the matter has been considered at Aachen. Esser [12] studied the
problem in the frame of Stummel's theory [27], applying it to a variety of
problems, including rate of convergence for Romberg and general Hermite
procedures (the error estimates being free of derivatives), for boundary
value problems for ordinary differential equations, for Runge-Kutta pro
cedures for initial-value problems for ordinary differential equations, and for
integral equations.

It will be the purpose of this note to answer the question for a properly
posed initial-value problem, at the same time weakening stability to stability
with order (= instability with polynomial order). This material is treated in
Section 2. In Section 3 our general theorem is applied to a particular partial
differential equation with corresponding difference schemes. Wendroff [34]
and Thomee [28] have pointed out the close connection between various
definitions of properly posedness and corresponding ones of stability.
Therefore it is important to know that there exist examples of initial-value
problems satisfying the conditions of our main theorem, Theorem 1, in
particular those that are properly posed and at the same time stable of order f3
with f3 > O. This is the case for D'(IR) with p =1= 2 of an example discussed by
Brenner-Thomee [4], also treated in Section 3.

Actual interpolation space methods will not be used in our proofs; instead,
the estimates are expressed more directly in terms of the K-functional. Then
use is made of the fact that this K-functional can be estimated by means of
the generalized modulus of continuity in many particular cases (such as
X = LP (IR), 1 ~ p < <Xl). For this reason our approach is very elementary;
for completeness sake the connection with interpolation space theory is
mentioned (for the latter see, for example, Butzer and Berens [8, Chap. 3]),
and the results of Peetre and Thomee [20], for example, are seen to follow
from ours. See also Butzer et al. [9a].
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2. GENERALIZATION OF THE LAX THEOREM

2.1. Definitions and Basic Results

Consider the initial-value problem
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dldt lI(t) = Au(t).

u(O) = J,

I:;?:O

fEX,

(l.l)

,/ )\
\-·-1

where A is a closed linear operator (independent of t) with domain D(A)

dense in the Banach space X (with norm II . Ilx), andfis a given element in X
describing the initial state. The problem is to find a one-parameter family
u(t) E X, t :j: 0, satisfying (2.1) and (2.2). It is said to be properly (or correcliy)
posed if:

(2.3) it has a unique solution for eachfE U, U being dense in X, i.e.,
there exists a one-parameter family of operators Eo(I); U ---+ X for t ?: 0
such that u(t) = Eo(t)f for fEU, t )': 0, is the solution of (2.1), (2.2), and
Eo(t)fE D(A) for t )': °(implying U C D(A»,

(2.4) EoU) is uniformly continuous for 0 ,(; t ~ T (T > 0 arbitrarily
fixed), i.e.,

(J, g E U: 0 ~ t .~ T),

CT being some positive constant depending on T.
Let E(t) denote the unique continuous extension of Eo(r) from U to the

whole space X. It can readily be shown that the solution operators E(t) of a
properly posed initial-value problem (2.1), (2.2) form a semigroup of class
(Co) (i.e., for which E(O) = I(= identity), E(t + s) = E(t)E(s) for aU t,
s ?c 0, limt-->o Ii E(t)f - J:lx = 0 forfE X) with infinitesimal generator A, and
conversely (see Butzer and Berens [8J for basic properties on semigroups).

Let £" be a finite difference operator so that an iterated application of
E" to (yields Er/1which approximates E(k)"f = E(nk)f With this purpose
in mind the following definitions are standard; see [21,20,28].

The family of operators {E,J,,>o C [X] is said to be consistent of order
,x > 0 (or possess order of accuracy .:x) on U with the family {E(t)}t>o provided
for T > 0 there exist positive constants CT 2 and !3 (~T) such that

(0 < k :::;:: 8, 0 :s:; t ~ T;fE Ui,

(2.5)

, The constant CT (depending on T) may have different values at each occurrer:ce.
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B(f) being some functional (a seminorm) defined on U. Ordinary consistency
corresponds to the case that the right side of (2.5) is replaced by o(k) for
k ---+ O.

The family {E"h>o is said to be convergent with order CI: > 0 on a subspace
Z of X, if

(0 < k :'( 0, 0 :'( nk :'( T; fEZ), (2.6)

B'(!) being some functional defined on Z. Pure convergence is of course to
be understood in the sense that for any f E X

lim II E/,"f - E(nk)fllx = 0
k->O

(0 < k :'( 0, 0 :'( nk :'( T). (2.7)

The family {Ekh>o is said to be stable oforder f3 ?:: 0, if

(0 < k :'( 0,0:'( nk :'( T;fE X). (2.8)

(By the uniform boundedness theorem (2.8) is equivalent to II Ek '111x :'(
CTk-13M(f) for some constant M(f) depending on f The case f3 = 0 is
ordinary stability.) As [21, p. 95] notes, this definition agrees with the
empirical observation that instability is usually distinguished from ordinary
stability by an exponential rather than polynomial growth of error.

In this notation the Lax equivalence theorem in its standard form reads:

Given a properly posed initial-value problem (2.1), (2.2) in X and a finite
difference approximation generated by Ek satisfying the ordinary consistency
condition, then stability (of order 0) is a necessary and sufficient condition for
(pure) convergence.

In order to equip this theorem with orders, first note that if the family {Ed
is stable of order f3 ?:: 0 and consistent of order ex on U with CI: > f3, then
E,,'1converges to E(nk)fwith order ex - f3 for allfE U. Indeed, since (2.1),
(2.2) is properly posed,

n-1

II Eknf - E(nk)fllx = II L Ekj[Ek - E(k)] E«n - I - j) k)fll
J~O x

n-l

:'( L {!I E,,; ll[x] k 13} k-13 II[Ek - E(k)] £((n - 1 - j) k)fllx
j~O

n-1

:'( L CTk-13kl+~CTB(f)
j~O

:'( nkCTk~-13B(f) (0 < k :'( 0, 0 :'( nk :'( T;f E U).
(2.9)
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In the case of ordinary stability, order of convergence and consistency are
both equal to another, namely to iX, Further note that the estimate (2,9) is
also valid for 0 < iX ~ (3. Although one does not have convergence in this
instance. (2.9) may then be interpreted as a restriction upon the growth of
error.

The next step is to estimate the rate of convergence for generalized solu··
tions of (2.1), (2.2), i.e., solutions with initial valuesfE X.

PROPOSlTlON 1. GireiJ a properly posed initial-value problem (2.1), (2.2}

and a family offinite difference operatots {£,.:J C [X] consistenr of Grder .\ > 0
on U l:'ith {E(t)}.

If the family {EIe } is stable of order {3 ;:? 0, thcn there is a constant CT slIch
that for any f E X

V 't I"~ Tr ['\ '- • f(I'f II' B( )\1\.8\·" ,A, '/.- :~u - g x --;- t g/!

(0 < k ~C:;; &, 0 ~ nk ,::; T).

il.l0)

(t :;:::- O;[E X) (2.11)

is the so-called modified K-fimctional.

Proof Let fE X, g E U be arbitrary. The estimate (2.9) and the uniform
boundedness of the operators E(t) for 0 ~ t ~ T imply that

E 1.."f - E(nk)fi-r ~ I' £/:''1~ E,,"g lix + II Er/,g - E(nk) g Ix
+ II E(nk) g - E(nk)f!!x

~ CTk-B!If - g :Ix + nkCTk>-8B( g) -'- CT i:j - g Il x
~ CTk-B{ilf - g fix + nk,,-lB( g)}

for 0 < k ~ 8, 0 ~ nk ~T. Since the left side of this inequality is indepen
dent of g E U, taking the infimum over all g E U yields (2.1 0) for an f E X.

Thus the rate of convergence for arbitrary f E X depends essentially, apart
from the factor k-B, upon the behavior of the K-functional KB(t, f). It is a
continuous and monotone decreasing function of t for t ~ OT wi!:,

((EX) <2.12)

(since U is dense in X). Moreover, one has by definition (2.11)

KBCtJ; X, U) ~ IlfII,

~ tBU) ,

fEX

fE U.
(2.] 3)
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In many particular cases, such as X = LP(IR), 1 ~ P < 00, with suitable U
and B(f), KB(t,1) can be estimated by the modulus of continuity (see below).

2.2. The Ivfain Theorem

THEOREM 1. Under the main hypotheses of Proposition 1 the following
assertions are equivalent;

(a) the family {E,.} is stable oforder {3 ;?: 0,

(b) \! E7c"f - E(nk)fllx ~ CTk-SKB(nk'+l,f: X, U)

(0 <k ~8,0 ~nk ~ T;fEX),

( """) II E ''I E( / )fll ~ C k-·8 \M(f),
C,I,ll k - n/( ,x ~ T inkHiB(j),

fEX
fE U

(0 < k ~ 8; 0 ~ nk ~ T),

M(f) being a constant depending on f

Proof By Prop. lone has (a) => (b). The implication (b) => (c) follows
by (2.13). Concerning the step (c, i) 0=;> (a), first note that by the uniform
boundedness theorem (c, i) implies that there exists a constant CT such that

!I Ek''I - E(nk)fllx ~ CTk-s Ilfllx (0 < k ~ 8, 0 ~ nk ~ T;fE X).

This yields, the E(t) being uniformly bounded for 0 ~ t ~ T, for any f E X,

Ii Ek '111x ~ II Ek'1- E(nk)fllx + i: E(nk)flx

~ CTk-s Ilfllx + CT Iinx
~ CTk-1J Ilfllx (0 < k ~ 8, 0 ~ nk ~ T),

so that there is stability of order {3. This proves the theorem.

Comparing the above theorem with that of Lax, we see that the assertions
of ordinary stability and pure convergence are replaced here by assertions (a)
and (b), respectively, which involve orders. Our theorem therefore contains
the Lax theorem in this sense since assertion (b) in case {3 = 0 implies the
convergence assertion (2.7) in view of (2.12). Note that (2.10) or (b) of
Theorem 1 gives a unified description of the (rate of) convergence covering
bothfE X andfE U (as is formulated separately in assertion (c».

In concrete cases the consistency condition (2.5) is often given in a more
suitable form, namely

it[Ek - E(k)] E(t)fI1x ~ CTkl+Q IlfIIDrA'+l)

(0 < k ~ 8; 0 ~ t ~ T;fE D(A'c-i», (2.14)
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for some fixed r E 1\1, usually with ex = r. Here A is the infinitesimal generator
of the semigroup {E(t)}t>o , and the domain D(A "~l) of the (I' + ])th power
of A is a Banach space under the norm

\fE D(AI+l».

It is known (see [8, p. 12]) that D(A Ie-I) is dense in X, and this is our subspace
U of above. In this case the K-functional takes on the form

Instead of (2.10) one then has the estimate

v ;;; 0:/= X).

(2.] 5)

(0 < k ~ 8, 0 ~ ilk :::{ T;fE X). {.2.16)

Note that in the necessity part of the proof of Theorem I the consistency
condition was not used (just as for the original Lax result). The question
therefore arises whether convergence implies stability as wel! as consistency.
In this direction we have

PROPOSITION 2. Gil'en a properly posed problem (2.1), (2.2) slich thut
fE C:= D(Ar~l) for some r EN, and a family offinite difference operators
{Ed ,>0 C [Xl If the family is convergent in the sense

II E nr~ E( k) t'l' --- C k-S. \j1;[(f)
! ~'. 11. ,IX ~ T I k~-'-l 'I til

11 !J DlA"'cl),

fEX
fE D(A'~l)

(0 < k < 8; 0 ~ Ilk ~ n, (2.17j,ii)

thell it is stable of order f3 and consistent of order at least or: - f3 on DIA"' 1)"
i.e.,

for 0 < k < 8, 0 ~ t ~ T, and fED(A'-l). i2.I8}

Proof. The fact that condition (2.l7,i) implies that {Ed is stable of order
,13 was already established in Theorem 1. Concerning consistency, the hypo
thesis (2.17, ii) for n = 1 withfE D(A'+l) replaced by E(t)fE D(k-1) gives

< Crku.-S+l{ ~u~ Ii E(w)l[x]} ii/ilmA,,)
O",,-U-l": T
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for all f E D(ATH), k E (0, 0], t E [0, T]. This is just the definition of consis
tency of order Oc - f3.

Whether the estimate (2.18) is the best possible one under our present
definitions of convergence, consistency, and stability remains unsolved. If
hypothesis (2.17, i, ii) is given with f3 = 0, then Proposition 2 yields con
sistency of order iX. By the way, Spijker [24] (see also [2, p. 75]) has shown by
an example that convergence of order iX = 0 does not necessarily imply
consistency of order zero.

It is to be emphasized that convergence or consistency does not necessarily
have the same meaning by all authors. Thus Chartres and Stepleman [10, 11]
modified their definitions in such a fashion that in their form the Lax theorem
even states that convergence implies stability as well as consistency. See also
Spijker [25] in this matter.

3. STABILITY AND CONVERGENCE IN LP(IR), C(IR) FOR A CERTAIN

DIFFERENCE SCHEME

Let X be one of the spaces U(IR), 1 ~ p < 00, or C(IR) (= set of uni
formly continuous and bounded functions on IR) for p = 00, with

II r Ilx = (J' I v(x) IPdx )l/P,
, iHi '

= sup I v(x)l,
"E~

Let us consider the initial-value problem

x = U(IR)

x = C(IR).

o (;
ot u = ax U (x E IR, t ;?: 0) (3.1)

u(x, 0) = vex) (x E IR, v EX).

The genuine solution of (3.1) is given by u(x, t) = [E(t) v] (x) = vex + t).
The operators E(t) build a semigroup of class (Co) in [X]. For, the actual
semigroup property is obvious; the (Co)-property follows by continuity in
the mean, i.e.,

lim !I E(t) v - v Ilx = lim II t( + t) - vOllx = °
(->0+ t->O+

(v EX).

Moreover, the set U = {v E X: (didx) v E X} is dense in X, so that the problem
(3.1) is properly posed in accordance with definition (2.3).

To obtain an approximate solution of (3.1) consider a finite difference
operator E k defined by

00

[Ekv](x) = L ajt'Cx - jh), L I Gi I < 00, kh-1 = A = const > O. (3.2)
i=-r:f:J j
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To discuss the stability of Ek in X consider, following Brenner and Thomee
[4], the characteristic function of Ek defined by

00

aCYl = L aje-ijy
j~-",

(y E IR). (3.3)

Now it is a known fact that for the space V(IPi) a necessary and sufficien::
condition for stability (with f3 = 0) is that [a( Y)[ :(; 1, y E K For X =

D'(IFR) with p + 2 this condition is still necessary but not sufficient. If: a( ;')1
< 1 for some 0 with 0 < I y I < 0, one can write for small y

a( y) = exp(-i'\y + f( y)

where (unless f == 0 and E/,; is exact)

( )' E 1Pi),

f( y) = fo yr+l(l + 0(1))

Re f( y) = -yy'(1 + 0(1))

( Y ----'>- 0), fo + 0, r ;:;: 1

(y ----'>- 0), Y > O.

(3.4;

(3.5)

Here rand s can be interpreted as the orders of consistency and dissipatIOn.
respectively, of the operator Ek •

Brenner and Thomee [4] obtained the following estimate for stability ill
terms of these constants I' and s: there are positive constants C1 and C2 such
that for any k > 0, 11 EN,

According to definition (2.8) this means that the family {E1J is stable of
order f3 = I(t - (l/p)! . (1 - «I' + l)/s) in X = U([l;£) (or X = C(1l~n

for p = (0).
To apply our theory we still have to verify the consistency condition of

type (2.14). So we must estimate the expression 1 [E/,;1' - E(k) v](x)1 for v E X
and small k. In many particular cases of (3.2) a Taylor expansion delivers 2.\1

estimate of the following form

. x~k J

I [Ekv - E(k) v](x) I :< Ckl' \ { I z;(r+l'(t)i dt' (3.7)
-~ • I.I~_I: I ,\'

The Holder-inequality applied to the term in the curly brackets yields for
1 :(; p <:x::
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Integration over - 00 < x < 00 and the Fubini theorem give

J. [[EkV - E(k) v](x)IP dx :(; CkP (I'+l)-l J' IX+/': I V(I'+l)(t)[P dt . dx
R R ~k

Thus we have the desired consistency estimate with A = a/ax when replacing
~'(x) by [E(t) v](x), and noting that II E(t) V IID(Ar+l) :(; CT II V IIV(Ar+lj, 0 :(; t :(; T,
namely

(3.8)

The case X = C(IR) is treated similarly.
We have now verified the hypotheses of Theorem 1 under the modifica

tions of (2.14)-(2.17). In order to give our results a more concrete form, we
make use of the known fact (see [8, p. 192]) that the K-functional given by
(2.15) can be estimated by

Cl.rw,.(k,f; X) :(; K(kr,f; X, D(Ar+l))

:(; C 2.,.(kr 1I/IIx + wr(k,f; X)) (0 < k :(; 8), (3.9)

where C1". , C2.,. are constants independent of k andf, and

w,.(t,f; X) = sup II ±() (-1}"-8 f(· + sh) II (t :?: 0, r EN;j EO X) (3.10)
O<h<t 8~O S, ,x

is the fth modulus of continuity of1 EO X.
This estimate may also be represented in terms of the socalled generalized

Lipschitz spaces, giving the connection to the investigations by Thomee,
Brenner, etc. Lip(y, f, 00; X) is the space of all elements1 EO X for which the
norm

Il/llLip(y,r.oc;X) = 1I/IIx + sup {t-Ywr(t,f; X)} (3.11)
t>o

is finite for some y EO IR and r EO N with 0 < y < r. This space is a Banach
space under the norm (3.11), which is "intermediate" to X and D(ArH) in the
sense that

D(A"+!) C Lip(y, f, 00; X) C X

with continuous embedding (the extreme cases X and D(ArH) being taken
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on for y = 0 and y = r, respectively). If y = / + Yj, 0 < YJ ~ 1, 1 = 0,
1, ... , I' - 1, an equivalent norm for this space is given by

I:flx + sup {t-Vw1(t, A~f; X)J,
t>')

[if Ix + sup {t-1
W 2(t, Alj; X)},

t>8

o <.:: Y)

~) = I

(the rth modulus having been "reduced" to the more practical first or second
modulus of continuity, respectively). In this terminology K(t, f) given by (3.9)
may be estimated by

K(k'',J; X, D(A"-H» ~ ekY[kr~y Ullx - lc·'w,.(k,f: X)J

~ ek"" Ilfl 'uply,1',X;X)

'where 0 < y < r, 0 < k ~ O.
In view of (3.6) Theorem 1 yields

THEOREM 2. Given the initial-value problem (3.1) in X(=LP(iR), 1 ~ p
< 00, or C(IR» and a finite difference approximation £1: defined by (3.2) with
suitable constants I' and s given by (3.4), (3.5) for ll'hich an expansion of type
(3.7) is possible. The following assertions are mUd:

(a) The family {El:h>o is stable of order

j3 = rm - (l/p)!(l - «I' + l)/s») in X,

(0 < k ~ 0, 0 ~ nk ~ T: ~, t= X)

~ erk-Sky Ii v ILip (./. , ,"';x)

(v E Lip(y, 1',00; X»,

I.c'} Ii E "v E(nk) I'll :;:::: e k-13 . iAf(r),
" k - X "'" r Ik"Clll' I'x ....j.... I: 1,(H) Ilx),

VEX

v(1'+1) E X.

Assertion (b) gives us for initial data v possessing certain smoothness
conditions estimates for the rate of convergence which lie between the
extreme values -(3 and I' - (3 for 0 < (3 < 1', convergence in the sense cf
(2.6) taking place if y > (3. These estimates are "intermediate" to the two
cases of assertion (c).

For a particular difference operator take the Lax- Wendroff operator
which is defined for (3.1) by

[Ekv](x) = (t)(;\2 + ,\) vex + h) + (1 - ;\2) l{X) -t- G)(,V - .>.) l'(x - h)
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with A = klh = const > O. Elementary calculations give for its characteristic
function the representations

a(y) = 1 - ;\2(1 - cos y) + iA siny,

I a( y)1 2 = 1 - ;\2 (1 - A2)(1 - cos y)2.

Therefore we have (ordinary) stability in P(IR) for 0 < A < 1. The constants
I' and s in (3.4), (3.5), (3.8) can here be shown to be I' = 2 and s = 4. The
Lax-Wendorff operator is therefore stable of order fJ = tl i - (lIp)! in
LP(IR). In case X = V(IR) or C(IR) one has fJ = i, for P(IR) fJ = 1/16, and
for P(IR) fJ = 0 as expected.

From assertion (b) we conclude for this instance that the finite difference
approximation of (3.1) by (3.2) converges with order y - fJ provided the
initial value v belongs to the space Lip(y, 2, 00: X) for some 0 < Y < 2, i.e.,
if SUPt>o {t-YW2(t, v: X)} < + 00.

It is to be noted that Brenner and Thomee obtained better estimates than
the above in the case ex is bounded from below: (I' + 1)1ct) - (lIp)! < a <
I' + 1. Then they have convergence of order a(l - (1/(1' + 1))), whereas
ours is (X(l - (1/(1' + 1))) - fJ, fJ being the order of stability. This is to be
expected since they used intricate and long estimates depending upon methods
of Fourier analysis for this particular example: we on the other hand just
applied our general theorem. Finally note that the approximation estimate
of Prop. 1 can be improved for holomorphic semigroup operators; see
Weis [33].
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